High resolution soil moisture monitoring: the potential of large-N seismology

Davidson, K. J.¹ Hammond, J.O.S.¹ Lane, V. S.² Finch, L. E.² Kendall, J.-M.3 Walker, A.M.³ Ogden, C. S.4 Han, C.1 Wu, J.-C.1 Ryan, D.1 Doherty, K.5 Tranter, N.5 O'Toole, T.5

1. Birkbeck, University of London 2. SEIS-UK 3. University of Oxford 4. University of Leicester 5. STRYDE

Water is key driver of soil property changes

Range of potential applications:

- Landslides
- Flooding
- Agriculture

Trade-offs in resolution and cost

	Approx. Instrument
Method	Costs [€]
CRNP	10,000–25,000
GNSS	2000–12,000 ¹
Radiometry	50,000-100,000
Gamma ray	3000-10,000 ¹
Gravimetry	\sim 250,000 ⁴ ; 50–90,000 ⁵
LFEMW	~3000

 There is a gap in coverage at "field" scales – 10s -100s of meters

Geophysical methods

- Geophysical methods such as Ground Penetrating Radar or Electrical Resistivity Tomography can occupy this spatial gap
- However, conventional methods provide a "snapshot" image of a point in time
- We want to monitor changes over time at a high temporal resolution
- This requires a continuous signal omnipresent seismic ambient noise provides this

Instrumentation – Stryde nodal seismometers

• Broadband seismometers are expensive, cumbersome

and target lower bandwidths

We need a lot of closely-spaced sensors to monitor shallow depths to account for the **attenuation** at high frequencies

For large-N studies we use a cheap **node** sensor

Advantages of nodes for agriculture

- Self-contained and battery powered, no need for external cabling or solar panels
- No specialist knowledge required to deploy or retrieve, can be scheduled around harvesting
- Non-intrusive no excavation
- Redundancy through large numbers, important where sensors may be damaged or lost

Case Study – Crichton Royal Farm, Dumfries

 Located in south-west Scotland, our study site hosts a UK-CEH environmental monitoring station recording soil moisture and temperature profiles along with meteorological data

Sensor deployment

- Nodes with 5m 10m spacing
- 1230 vertical component nodes in array in total
- ~4 days to deploy, 2 to retrieve
- 28 days recording time
- 6TB of data

What noise sources do we see?

• Strong continuous noise signal ~50Hz

Stacking for the Green's Function

- Stacking the cross-correlations allows us to improve signal-tonoise ratio and produce the Green's Function
- Equivalent to the signal recorded if a source was at one station and the receiver at the other
- For our study, a 30 minute stack provides good signal-to-noise.
- We compare a short-term CCF to the long-term reference to detect variations in velocity

Depth depends on frequency

- We can view different frequencies to investigate different depths
- Our data have resolution in the top few metres

- We stack data across 9-station sub-arrays
- Daily stacks show consistent velocity changes across the field

0000000

0000000

Hypothesis: that the deeper soil reaches saturation ~ 1 day early
A possible flood precursor?

- = Overburden stress
- $P_w/P_a = Water/air pressure$
- $T_s = Capillary tension$

Assumptions

- Sandy Clay soil type
- Not a bad assumption, but real soil composition unconstrained.
- 0 % velocity anomaly = 1.8 m water table depth
- This is plausible, but unconstrained

Assumptions

- Sandy Clay soil type
- Not a bad assumption, but real soil composition unconstrained.
- 0 % velocity anomaly = 1.8 m water table depth
- This is plausible, but unconstrained

Future work

Our pilot study has shown the approach is valid and fills a gap in current soil monitoring methods

We would like to repeat the study at other sites across the UK (and beyond?)

To do:

- Calibration of velocity variation with water content
- Lab constraints on soil properties
- Test sensitivity at different frequencies (depths)

Conclusions and Acknowledgements

- Non-intrusive monitoring of subsurface changes in the CZ is possible with ambient noise and nodal seismometers
- Dense nodal arrays are quick to deploy at scale
- In a pilot study, we show a correlation between seismic velocity and changes in soil moisture with 30-minute temporal and 10 metre spatial resolutions
- This offers new possibilities for high-resolution studies at local scales – important for understanding agriculture, flooding, landslides...
- Scaling up becomes a "big data" challenge!

